网上有关“实数集R是什么的子集?”话题很是火热,小编也是针对实数集R是什么的子集?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
R是实数集,Q是有理数集,R\Q表示有理数集在实数集中的余集,也就是实数集中去掉所有有理数后剩下的元素组成的集合,也就是无理数集。
总而言之一句话,R\Q表示无理数集。
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。有理数集是一个无穷集,不存在最大值或最小值。
扩展资料:
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
1、加法的交换律:a+b=b+a
2、加法的结合律:a+(b+c)=(a+b)+c
3、存在加法的单位元0,使0+a=a+0=a
4、对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0
5、乘法的交换律:ab=ba
6、乘法的结合律;a·(b·c)=(a·b)·c
7、乘法的分配律:a(b+c)=ab+ac
8、存在乘法的单位元1,使得对任意有理数a,有1×a=a×1=a
9、对于不为0的有理数a,存在乘法逆元1/a,使1/a×a=a×1/a=1
0a=0说明:一个数乘0还等于0。
任何一个非空有上界的集合(包含于R)必有上确界。
设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<c<y。
符合以上四组公理的任何一个集合都叫做实数集,实数集的元素称为实数。
参考资料:
参考资料:
实数集的意思是:一个包含所有有理数和无理数的集合。通常用大写字母R表示。
一、实数集的特性
1、实数集是无限的,包含所有实数,而实数本身就是无限的。
2、实数集是完备的,其中的每个子集都有上确界和下确界。这保证了实数集中的每个数都可以被准确地表示,并且可以进行各种运算。
3、实数集是有序的,每个数都可以被排成一个序列,序列是按照大小顺序排列的。这个性质使得实数集可以用来描述各种大小关系。
4、实数集是连续的,其中的每个数都可以用数轴上的一个点来表示,而数轴上的点是连续的。这使得实数集可以用来描述各种连续的现象,例如时间、空间、温度等。
5、实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
6、实数具有传递性,如果a>b且b>c,那么a>c。
7、实数具有阿基米德性质,即如果a>b,那么存在一个实数m,使得a=b+m。
二、实数集的来源
实数集是18世纪微积分学在实数的基础上发展起来的,但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
实数集的应用:
1、解方程:
在代数和方程理论中,实数集是解决一元二次方程等式时的所有可能的根。例如,一元二次方程ax^2 + bx + c = 0的解为x = [-b ± sqrt(b^2 - 4ac)] / (2a),这个解是在实数域中。
2、微积分:
在微积分中,实数集是定义连续函数的基础。连续函数在实数集中的每个点都有一个定义好的值,并且这个值可以在任何两个实数之间取到。此外,实数集还可以用于定义导数和积分,它们都是微积分的重要概念。
3、几何学:
在几何学中,实数集用于定义坐标轴和测量的长度。例如,在欧几里得空间中,点的位置是通过一对实数坐标来确定的,而这些坐标可以用实数来表示。此外,线段的长度、面积和体积等都可以用实数来测量。
4、物理学:
在物理学中,实数集是用来描述我们可观测的物理量的。例如,物体的位置、速度、加速度、力等都可以用实数来描述。此外,物理学中的许多定律和公式都是用实数来表达的。
5、概率论:
在概率论中,实数集是用来描述随机事件的概率的。例如,一个随机变量的取值可以是任何实数,而这个随机变量的概率分布也可以用实数来描述。
关于“实数集R是什么的子集?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[硕涵柳]投稿,不代表海宁号立场,如若转载,请注明出处:https://wap.hnjsjm.com/hainin/9029.html
评论列表(3条)
我是海宁号的签约作者“硕涵柳”
本文概览:网上有关“实数集R是什么的子集?”话题很是火热,小编也是针对实数集R是什么的子集?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。R是实...
文章不错《实数集R是什么的子集?》内容很有帮助