混沌动力学的进展

网上有关“混沌动力学的进展”话题很是火热,小编也是针对混沌动力学的进展寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

许多其它学者为混沌理论的进展做出了不可磨灭的贡献。美国数学家J.York与他的研究生T.Ylie在1975年的论文“周期3则混沌(Chaos)”中首先引入了“混沌”这个名称。1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。

在确定性的系统中发现混沌,改变了人们过去一直认为宇宙是一个可以预测的系统的看法。用决定论的方程,找不到稳定的模式,得到的却是随机的结果,彻底打破了拉普拉斯决定论式的“因果决定论可预测度”的幻想。而混沌理论则研究如何把复杂的非稳定性事件控制到稳定状态的方法。

混沌理论作为一个科学理论具有三个关键概念,或者说是三个特性:初值敏感性、分形(fractals)和奇异吸引子。

分岔现象的研究引起了众多领域的科学家的兴趣。理论和实验的结果都表明,分岔现象是出现在许多学科中的普遍物理现象。早在19世纪,C.雅可比、H.庞加莱等人就已引进“分岔”这一术语。迄今已出现了许多关于分岔理论的著作,其中除大量的数学文献外,在弹性结构、流体力学、天体物理学、化学反应、非线性振动、生物发育、基本粒子理论等领域中有关分岔现象的文献数量也很多。在系统与控制理论中,分岔理论可以用来探讨非线性系统中分岔现象的产生和消失、分岔性失稳的出现和控制以及分岔性失稳系统的调节和控制等问题。分岔理论也为协同学、耗散结构理论、数学生态学提供了有用的工具。20世纪70年代后期关于混沌现象和奇异吸引子的研究结果表明,连续发生的分岔现象往往是出现混沌现象的先兆。混沌现象是比分岔更为复杂的一类非线性现象。它不是简单的无序和混乱状态,而是没有明显的周期和对称、却具备丰富的内部层次的有序状态。分岔理论对许多实际系统的研究有重要意义。

从数学角度来说,分岔理论主要研究非线性方程(微分方程、积分方程、差分方程等)中的参数对解的定性性质的影响。其中,参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究的重点。早在1885年,庞加莱就提出了一套平面动力学系统的平衡状态与参数的关系的理论。他研究了参数通过分岔值时系统轨线的拓扑结构的变化状况,建立了相应的判别准则。20世纪50年代,苏联学者A.A.安德罗诺夫推广了庞加莱的结果,并在非线性振动理论中加以应用。后来,又有人研究高维欧几里德空间或巴拿赫空间中的分岔理论,但结果还不多。

关于“混沌动力学的进展”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[恭金利]投稿,不代表海宁号立场,如若转载,请注明出处:https://wap.hnjsjm.com/hainin/15537.html

(6)
恭金利的头像恭金利签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 恭金利的头像
    恭金利 2025年10月01日

    我是海宁号的签约作者“恭金利”

  • 恭金利
    恭金利 2025年10月01日

    本文概览:网上有关“混沌动力学的进展”话题很是火热,小编也是针对混沌动力学的进展寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。许多其它学者为混沌...

  • 恭金利
    用户100111 2025年10月01日

    文章不错《混沌动力学的进展》内容很有帮助